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ABSTRACT
In an earlier work we identiÐed a global, nonaxisymmetric instability associated with the presence of

an extreme in the radial proÐle of the key function L(r) 4 (&)/i2)S2@! in a thin, inviscid, nonmagnetized
accretion disk. Here &(r) is the surface mass density of the disk, )(r) is the angular rotation rate, S(r) is
the speciÐc entropy, ! is the adiabatic index, and i(r) is the radial epicyclic frequency. The dispersion
relation of the instability was shown to be similar to that of Rossby waves in planetary atmospheres. In
this paper, we present the detailed linear theory of this Rossby wave instability and show that it exists
for a wider range of conditions, speciÐcally, for the case where there is a ““ jump ÏÏ over some range of r in
&(r) or in the pressure P(r). We elucidate the physical mechanism of this instability and its dependence
on various parameters, including the magnitude of the ““ bump ÏÏ or ““ jump,ÏÏ the azimuthal mode number,
and the sound speed in the disk. We Ðnd a large parameter range where the disk is stable to axisym-
metric perturbations but unstable to the nonaxisymmetric Rossby waves. We Ðnd that growth rates of
the Rossby wave instability can be high, for relative small jumps or bumps. We discuss possibleD0.2)Kconditions which can lead to this instability and the consequences of the instability.
Subject headings : accretion, accretion disks È hydrodynamics È instabilities È waves

1. INTRODUCTION

The central problem of accretion disk theory is under-
standing the mechanism of angular momentum transport.
The angular momentum must Ñow outward in order that
matter accrete onto the central gravitating object. Earlier
work suggested hydrodynamic turbulence as the mecha-
nism of enhanced turbulent viscosity with a ¹ 1 al

t
\ ac

s
h,

dimensionless constant, the sound speed, and h the half-c
sthickness of the disk (Shakura & Sunyaev 1973). However,

the physical origin and level of the turbulence have not been
established (see Papaloizou & Lin 1995 for a review).
Recently, the magneto-rotational instability (Velikhov
1959 ; Chandrasekhar 1960 ; see review by Balbus & Hawley
1998) has been studied in two-dimensional and three-
dimensional MHD simulations and shown to give a
Maxwell stress sufficient to give signiÐcant outward trans-
port of angular momentum (Hawley, Gammie, & Balbus
1995 ; Balbus & Hawley 1998) ; that is, a statistically aver-
aged, e†ective Shakura-Sunyaev a-parameter is found to be
a D 0.01 (Brandenburg et al. 1995). However, signiÐcant
questions remain : The simulation studies are local in that a
shearing patch or box of the actual disk of size >r is
treated. The boundary conditions on the top and bottom
sides of the box have so far been unphysical ; they do not
account for the leakage of Poynting Ñux through the sur-
faces of the disk. Furthermore, disks in some systems (e.g.,
protostellar systems) are predicted to have very small con-
ductivity so that coupling between matter and magnetic
Ðeld is negligible. For these reasons we believe it is impor-
tant to understand the fundamental physics of purely
hydrodynamic accretion.

Interesting fundamental questions still exist concerning
pure hydrodynamic processes in accretion disks. One well-
known hydrodynamic instability of disks is the Papaloizou-
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Pringle instability (Papaloizou & Pringle 1984 ; Papaloizou
& Pringle 1985 ; hereafter PP) which has been extensively
studied both in linear theory and by numerical simulations
(Blaes 1985 ; Drury 1985 ; Frank & Robertson 1988 ; Glatzel
1988 ; Goldreich, Goodman, & Narayan 1986 ; Kato 1987 ;
Narayan, Goldreich, & Goodman 1987 ; Kojima, Miyama,
& Kubotani 1989 ; Hawley 1991 ; Zurek & Benz 1986 ; see
review by Narayan & Goodman 1989). In these studies, the
““ disk ÏÏ is taken to be a thin torus (Ðnite height) or annulus
(inÐnite along z) with the radial width much less than the
radius. The corotation radius, where the phase velocity of
the wave equals the angular velocity of the matter )(r),u

r
/m

has a crucial role in that a wave propagating radially across
it can be ampliÐed. However, signiÐcant growth of a wave
typically requires many passages through the corotation
radius, and this requires reÑecting inner and/or outer
boundaries of the disk. Thus the PP instability depends on
inner and outer disk boundary conditions which are artiÐ-
cial for accretion disks.

Recently, we pointed out a new Rossby wave instability
of nonmagnetized accretion disks (Lovelace et al. 1999,
hereafter Paper I). Paper I shows that the local WKB dis-
persion relation for the unstable modes is closely analogous
to that for Rossby waves in planetary atmospheres (see, for
example, Hoskins, McIntyre, & Robertson 1985 ; Brekhov-
skikh & Goncharov 1993, p. 246). The modes are associated
with the gradient of the potential vorticity (cf. Yecko 1995)
but are di†erent from the usual Rossby waves in incom-
pressible Ñows which are caused by variation in Ñuid thick-
ness. Rossby vortices associated with the waves are well
known in planetary atmospheres and give rise, for example,
to the Great Red Spot on Jupiter (Sommeria, Meyers, &
Swinney 1988 ; Marcus 1989, 1990).

In the cases considered in Paper I, the instability occurs
when there is a bump in the radial variation of L(r)4 (&)/
i2)S2@!, where &(r) is the surface mass density of the disk,
)(r) is the angular rotation rate, S(r) is the speciÐc entropy,
! is the adiabatic index, and i(r) is the radial epicyclic
frequency. Such a bump may arise from the nearly inviscid
accretion of matter with Ðnite speciÐc angular momentum l
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FIG. 1.ÈIllustration of the nature of the Rossby wave instability for
m\ 3 for the case of a homentropic Gaussian bump centered at a radius

The gray-scale component of the Ðgure represents the surfacer0\ 1.
density perturbation d& with the darkest region the highest density. The
contour lines and the arrows show the velocity Ðeld as seen in a reference
frame rotating at the angular rate of the disk This velocity Ðeld is)(r0).where is the Eulerian velocity pertur-*¿\ d¿] /ü [r)(r)[ r0)(r0)], d¿
bation. The Ðgure shows that the perturbation of the disk involves three
anticyclones of closed streamlines or ““ islands ÏÏ which approximately co-
incide with the regions of enhanced densities d&. The radial width of the
islands has been exaggerated to make them visible.

onto a compact star or black hole. The accreting matter
tends to pile up at the centrifugal radius (withr

c
\ l2/(GM)

M the mass of the central object), where it gives a radially
localized bump in L(r) (see, for example, Kuznetsov et al.
1999).

In accretion disks in some systems, such as active galactic
nuclei, the weak self-gravity at large distances can be impor-
tant in forming narrow rings and tightly wrapped spiral
perturbations (Shlosman, Begelman, & Frank 1990). Such
perturbations may give a bump in L(r) of the form con-
sidered here. The bump in L(r) is crucial because it leads to
trapping of the wave modes in a Ðnite range of radii encom-
passing the corotation radius. Thus, reÑecting inner and
outer disk radii, which are required for the PP instability,
are not required for the Rossby wave instability. In contrast
with studies of the PP instability, we allow a general equa-
tion of state where the entropy of the disk matter can vary
with radius.

The present paper develops in greater detail the work of
Paper I and presents the full linear theory analysis of the
instability without some simplifying assumptions made
there. The physical nature of the Rossby wave instability is
shown in Figure 1, where we have overlaid the velocity Ðeld
onto the surface density variations. The basic theory is
given in °° 2 and 3, and results are given in ° 4. In ° 5 we
discuss the details of this instability and compare it with
other hydrodynamic instabilities. Conclusions of this work
are summarized in ° 6.

2. EQUILIBRIUM DISKS

We consider the stability of nonmagnetized accretion
disks. The disks are assumed geometrically thin with verti-

cal half-thickness h > r, where r is the radial distance. We
use an inertial cylindrical (r, /, z) coordinate system. The
surface mass density and vertically integrated pressure are

&(r) \
P
~h

h
dz o(r, z), P(r) \

P
~h

h
dz p(r, z) .

The equilibrium disk is stationary (L/Lt \ 0) and axisym-
metric (L/L/\ 0), with the Ñow velocity that is,¿B vÕ(r)/

ü ;
the accretion velocity is assumed negligible. Self-gravityv

rof the disk is assumed negligible so that '(r)\ [GM/
(r2] z2)1@2, where M is the mass of the central object. But
we will discuss the e†ects of self-gravity in ° 5.

For the axisymmetric equilibrium disk, the radial force
balance is

vÕ2
r

4 r)2\ 1
&

dP
dr

] d'
dr

. (1)

The vertical hydrostatic equilibrium gives h(r)B (c
s
/vÕ)r,where

c
s
24 !

P
&

(2)

is the square of adiabatic sound speed and ! is an e†ective
adiabatic index discussed further in ° 3.

The focus of this paper is on the stability of equilibrium
disks with a slowly varying background shear Ñow and a
Ðnite-amplitude density variation over a Ðnite radial extent.
SpeciÐcally, we envision conditions where inÑowing matter
accumulates at some radius, for example, a centrifugal
barrier. This accumulation may occur if matter is supplied
at a rate exceeding the rate at which matter spreads by say a
turbulent viscosity. Depending on the angular momentum
distribution of the incoming Ñow, newly supplied matter
can form a disk with a Ðnite bump or jump in the surface
density at say r with a radial width *r. When the disk
surface density is sufficiently small, the disk optical depth is
small compared with unity and cooling by radiation is effi-
cient. As more matter is accumulated, the disk becomes
optically thick so that heat builds up inside the disk and can
be vertically conÐned, then pressure forces start to have an
important role for the disk dynamics. The present work is
directed at optically thick disks with signiÐcant pressure
forces.

We model the mentioned bumps and jumps with fairly
general radial proÐles of &(r) and P(r). These proÐles are
used to obtain the corresponding )(r) proÐle using equation
(1). SpeciÐcally, we consider two surface density distribu-
tions : One has a step jump from to over *r, and&1 &2[ &1this jump is surrounded by a smooth background Ñow,

&
&
*

\ 1 ]A

2
C
tanh

Ar [ r0
*r

B
] 1
D

, (3)

where is the surface density for the back-&
*

\ &0(r/r0)~b
ground disk, is its value at and b characterizes the&0 r0,slope (it is in a standard a-disk model). Quantities A[ 34and *r measure the amplitude and width of the jump,
respectively, and is radius of the jump. The second caser0we consider is a Gaussian bump,

&
&
*

\ 1 ] (A[ 1) exp
C

[ 1
2
Ar [ r0

*r
B2D

, (4)
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FIG. 2.ÈParameters of the initial equilibrium for the homentropic step
jump case (HSJ) : the pressure, the corresponding angular velocity,P(r)/P0 ;

the square of the epicyclic frequency, and the e†ective)(r)/)K ; i2(r)/)K2 ;
sound speed, The pressure jump is derived from a jump in surfacec

s
/vK.

density &(r) with an amplitude A\ 0.65 over This results in*r/r0\ 0.05.
a pressure jump (1 ]A)!B 2.3 for !\ 5/3. The disk rotation is close to
Keplerian except near the region of the pressure jump. Note that i2 is
everywhere positive.

where, again, A and *r measure the height and width of the
bump, respectively.

We assume an ideal gas equation of state, PP &T .
Depending on whether the Ñow is homentropic4 or not, we
can further derive or specify the radial distributions of tem-
perature and pressure based on &(r), whereT (r)/T0 P(r)/P0and are the values at for the background disk. WeT0 P0 r0also set to be the Keplerian speed at andv0 4 r0)0 r0deÐne the dimensionless sound speed as c024 !(P0/&0)/v02.In most of the following analysis, we take r0\ 1, *r/r0\
0.05, !\ 5/3, and c0/v0\ 0.1.

2.1. Homentropic Disks
For homentropic Ñows, we can determine andP/P0 T /T0using alone because of the relations&/&0 P/P0\ (&/&0)!and Based on these, we present twoT /T0 \ (P/P0)/(&/&0).

4 In actual Ñuids, the pressure depends on both density & and entropy
S. In this paper, we use the term homentropic to indicate that the pressure
depends only on density with the entropy a constant, P\ P(&). The term
barotropic is sometimes used for the same situation. Similarly, we use
nonhomentropic (instead of nonbarotropic) to describe a Ñow where the
entropy is not a constant and P\ P(&, S).

FIG. 3.ÈSimilar to Fig. 2 but for the case of an homentropic Gaussian
bump (HGB). The peak of the surface density is A\ 1.25 at whichr \ r0,gives a peak of the pressure A!B 1.45 for !\ 5/3. Again, i2 is everywhere
positive.

sample initial conÐgurations : one is a step jump with
A\ 0.65, which we call the HSJ (homentropic step jump)
case ; the other is a Gaussian bump with A\ 1.25, which
we call the HGB (homentropic Gaussian bump) case. The
adiabatic index is !\ 5/3 and the width *r/r0 \ 0.05.
Figures 2 and 3 show the proÐles of P/P(r0), )(r)/)K(r),

and for the HSJ and HGB cases.i2(r)/)K2(r), c
s
/vK(r0)Here, we have chosen the parameter b to be zero in the

smooth proÐle of We have studied the dependence of&
*
.

our results on b and Ðnd that for our results are0 ¹ b ¹ 34,essentially independent of b. Thus, we omit further dis-
cussion of the background disk.

2.2. Nonhomentropic Disks
For nonhomentropic Ñows, we have to specify inT /T0addition to in order to determine and conse-&/&0 P/P0quently )(r). Such conditions were studied in Paper I for a

Gaussian bump, which we will not repeat here. Instead, we
study a case where there a simultaneous step jump in both
surface density and temperature. In order to avoid too
many parameters, we will assume that the width and ampli-
tude of the jumps are the same for surface density and
temperature, which are described by equation (3). We will
refer to this initial conÐguration as the NSJ case
(nonhomentropic step jump). Figure 4 shows the depen-
dences of di†erent variables with A\ 0.52 and *r/r0\
0.05.
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FIG. 4.ÈSimilar to Fig. 2 but for the case of a nonhomentropic step
jump (NSJ). The jump amplitude of the surface density and temperature is
A\ 0.52, which gives a pressure jump of (1]A)2B 2.3. Again, i2 is
everywhere positive.

As we show later, the nonhomentropic cases have some
quantitative di†erences from the homentropic cases but the
essential physics is the same.

3. PERTURBATIONS OF DISK

We consider small perturbations to the inviscid Euler
equations. The perturbations are considered to be in the
plane of the disk. Thus the perturbed surface mass density
is the perturbed vertically integrated&3 \ &] d&(r, /, t),
pressure is and the perturbed ÑowP3 \ P] dP(r, /, t),
velocity is with The¿8 \¿] d¿(r, /, t), d¿\ (dv

r
, dvÕ, 0).

equations for the two-dimensional compressible disk are

D&3
Dt

] &3 $ Æ ¿8 \ 0 , (5)

D¿8
Dt

\ [1
&3

$P3 [ $' , (6)

D
Dt
A P3
&3 !
B

\ 0 , (7)

where

D
Dt

4
L
Lt

] ¿ Æ $

(see Paper I). Here, S 4 P/&! is referred to as the entropy of
the disk matter. Equation (7) corresponds to the adiabatic
motion of the disk matter. The rigorous relation for the

perturbation of the disk is of course whereD(p/oct)/Dt \ 0,
p, o, and are the three-dimensional pressure, density, andc

tadiabatic index, respectively. (We reserve the symbol c for
mode growth rate.) For slow perturbations of the disk
matter (timescales we have so that\h/c

s
D 1/)), h P JT ,

and consequently PP &! with !\T P&2(ct~1)@(ct`1),
Equations (5)È(7) are the vertically inte-(3c

t
[ 1)/(c

t
] 1).

grated two-dimensional Euler equations. The equations
assume that the disk thickness does not change rapidly with
radius or time, o dh/dr o> 1 and o Lh/Lt o> )r. The above
equations are closed with an equation of state. The ideal gas
law is applicable for the conditions of interest P\ &T /k,
where k is the mean mass per particle. Notice that the pres-
sure is in general a function of both the surface density &
and the entropy S (or equivalently, the temperature T ). This
is general in contrast with the commonly made assumption
that P\ P(&).

Following the steps of Paper I, we linearize the equations
by considering perturbations Pf (r) exp (im/[ iut), where
m\ ^1, ^2, etc., is the azimuthal mode number and u\

is the mode frequency. We use ( 4 dP/& as our keyu
r
] ic

variable which is analogous to enthalpy of the Ñow. (In a
homentropic Ñow considered by PP, ( is the enthalpy.) The
basic equations are given in Paper I, but for completeness
we also give the main equations here :

i*ud&\ $ Æ (&d¿) , (8)

which is from the continuity equation (5) ;

d&\ &
c
s
2 ( ] i

&dv
r

*uL
s
, (9)

&dv
r
\ iF

C*u
)
A
(@[ (

L
s

B
[ 2kÕ (

D
, (10)

&dvÕ\F
C
[kÕ

A*u
)

] c
s
2

*u)L
s
L
p

B
( ] i2

2)2
A
(@ [ (

L
s

BD
,

(11)

which are from EulerÏs equation (6). Here

kÕ4
m
r

,

i24
1
r3

d(r4)2)
dr

,

*u(r) 4 u[ m)(r) \ du
r
] ic\ u

r
[ m)(r)] ic ,

F(r) 4 &)/[i2[ *u2[ c
s
2/(L

s
L
p
)] ,

L & 4 1
NC d

dr
ln &
D

,

L
s
4 !

NC d
dr

ln
A P
&!
BD

,

L
p
4 !

NC d
dr

ln (P)
D

, (12)

where and are the radial length scales ofo L & o , o L
s
o , o L

p
o

the surface density, entropy, and pressure variations, respec-
tively. They are related as

1
L
p
\ 1

L
s
] 1

L &
. (13)
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Furthermore, we can obtain

1
r
ArF

)
(@
B@ [ kÕ2F

)
( \&(

c
s
2 ] 2kÕF@

*u
(

]
C F

)L
s
2] 1

r
A rF
)L

s

B@] 4kÕF
*uL

s
] kÕ2 c

s
2F

*u2)L
s
L
p

D
( , (14)

(see Paper I), which can in turn be written as

(@@] B(r)(@] C(r)( \ 0 , (15)

where

B(r)\ 1
r
]F@

F
[)@

)
, (16)

C(r)\ [ c1[ c2 , (17)

with

c1\ kÕ2]i2[ *u2
c
s
2 ] 2kÕ

)
*u

F@
F

, (18)

c2\ 1 [ L
s
@

L
s
2 ] B(r)] 4kÕ)/*u

L
s

] kÕ2 c
s
2/*u2[ 1
L
s
L
p

. (19)

For homentropic Ñow, Thus the coefficients inL
s
] O.

the above equations simplify to give

F(r)\ &)
i2[ *u2 , (20)

C(r)\ [c1 . (21)

In this limit, our equation (15) is the same as that given
previously (for example, PP).

For any given equilibrium disk, we can answer the fol-
lowing questions : (1) Are there unstable modes with posi-
tive growth rates c[ 0? (2) What is the nature of the radial
wave functions ((r) ? (3) What is the dependence of and cu

ron the initial equilibrium? (4) And what is the physical
mechanism(s) of the instability. Equation (15) allows the
determination of and identiÐcation of modeu\u

r
] ic

structure for general disk Ñows, both stable and unstable.

3.1. Axisymmetric Stability
It is important to know if the equilibrium disk including

the jump or bump is stable to axisymmetric perturbations.
Rather than solving the nonlocal axisymmetric stability
problem (which can be obtained from eq. [15]), we consider
the local stability criterion for axisymmetric perturbations.
This condition is expected to be a sufficient condition for
nonlocal stability. If the disk pressure is neglected, then the
Rayleigh criterion i24 (1/r3)d()2r4)/dr º 0 implies axisym-
metric stability (Drazin & Reid 1981, chap. 3 ; Binney &
Tremaine 1987, chap. 6). The more general condition
including the pressure is the Solberg-Hoiland criterion,

i2(r)] N2(r)º 0, where N24
1
&

dP
dr
A1
&

d&
dr

[ 1
!P

dP
dr
B

(22)

(Endal & SoÐa 1978). Here, N is the radial Brunt-Va� isa� la�
frequency for the disk due to the radial entropy variation.
For homentropic Ñow, N2 is zero. Typically N2(r) is nega-
tive for standard disk models (Shakura & Sunyaev 1973).
Although this is an unstable situation for convection in the
absence of rotation, it is stabilized by the rotation since
oN2 o is usually much smaller than i2 in an approximate

Keplerian disk. Figure 5 shows illustrative proÐles of i2(r)
and N2(r) for the NSJ case with A\ 0.52. The quantity
i2] N2 remains positive.

As the amplitude of the bump/jump A increases, we can
Ðnd a critical value where the condition given by equation
(22) is violated. This happens at 0.55, and 1.26AcritB 0.74,
for the HSJ, NSJ, and HGB cases, respectively. Physically,
this means that the local speciÐc angular momentum proÐle
is perturbed enough that it liberates energy when locally
exchanging two Ñuids radially. Actual axisymmetric insta-
bility is expected to occur only at values of A larger than
these values. Note also that the critical values areA

cdependent upon some other parameters, such as *r, !, and
whether the Ñow is homentropic or not. The important
point we note here is that we Ðnd nonaxisymmetric insta-
bility at values of A appreciably less than the values A

c
.

3.2. Methods of Solving Equation (15)
Since the eigenfrequency u is in general complex, equa-

tion (15) is a second-order di†erential equation with
complex coefficients which are functions of r. If we discretize
equation (15) on a grid i \ 1, . . . , N and combine it with
appropriate boundary conditions, the problem becomes
that of Ðnding the complex roots of the determinant of an
N ] N tridiagonal matrix. Upon Ðnding the roots, we can
then solve for the corresponding complex wave function
((r).

FIG. 5.ÈComparison of i2 (upper panel) and N2 (lower panel) for the
nonhomentropic step jump (NSJ ; see Fig. 4). Note the di†erence in magni-
tude of the two frequencies. The disk is locally stable according to the
Solberg-Hoiland criterion, i2] N2[ 0.
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We use a Nyquist method to Ðnd the u eigenvalues. For
this we integrate along a closed path in the complex u-plane
and thereby Ðnd regions where roots (and poles) reside. We
then use a Newton root Ðnder to locate the roots accurately.
Once a root is found for a particular set of parameters, we
can Ðnd other roots by varying the parameters slowly.
There are two apparent singularities in equation (15) : One
is at the corotation resonance where *u\ 0, which occurs
only on the real u-axis. The other is where W 4 i2[ *u2

which is a generalized form of the Lind-[ c
s
2/(L

s
L
p
)\ 0,

blad resonance condition for Ðnite Goldreich et al.L
s
.

(1986) showed that the Ðrst singularity is a real singularity,
whereas the second is spurious and is actually a regular
point. They considered the case when but theirL

s
] O,

conclusion still holds for Ðnite Thus, extra caution isL
s
.

needed in searching for roots in the complex plane with
c[ 0, because the condition W \ 0 can be satisÐed both
when c\ 0 and and when*u

r
2\ i2[ c

s
2/(L

s
L
p
) *u

r
\ 0

and The latter case is generally onlyc2 \[i2] c
s
2/(L

s
L
p
).

possible when which can be true if thei2[ c
s
2/(L

s
L
p
)\ 0,

pressure bump/jump is strong enough.

3.3. Boundary Conditions
The inner and outer boundaries on ((r) in equation (16)

are important. In most previous studies where a torus is
considered, the boundary condition is that the Lagrangian
pressure perturbation vanishes at the free surfaces (both
above and below the torus and at its radial limits). In the
present problem, the bump or jump is embedded in a back-
ground disk so that the appropriate boundaries are neces-
sarily at a large distance from the bump but still in the disk.
Inspection of the function C in equation (15) shows that

and correspond to large distances fromr/r0\ 0.8 r/r0[ 1.2
the bump. In these outer regions we can use a WKB repre-
sentation of ( with ( \ f (r) exp MisN. We then have

is@@[ s@2 ] iBs@ ] C\ 0 , (23)

where a prime denotes a derivative with respect to r. Away
from the bump, the s@@ term is small and it can be dropped.
Thus, we Ðnd for r > r0,

s@B
m)
c
s

] i
1
2
A

[ )@
)

[ c
s
@

c
s

B
B

m)
c
s

] i
15
16

1
r

. (24)

Thus, toward the inner boundary, o( o\ o exp Mi / s@drN oP
r~15@16, increasing as r decreases. This is indeed the depen-
dence found for the calculated wave functions discussed in
later sections. A similar procedure can be applied to the
outer boundary too.

The physical meaning of this radiative boundary condi-
tion can be understood by studying the dispersion relation
obtained from the WKB approximation at the inner and
outer parts of the disk. Let we havek

r
2B s@2BRe(C) ;

(u
r
[ m))2\ i2] k

r
2 c

s
2 . (25)

Since i2B )2 at both and away from the perturbedr1 r2region, the dispersion relation is then simply

u
r
\ m)^ J)2] k

r
2 c

s
2 . (26)

As it turns out that the most unstable mode usually has u
rclose to corotation at i.e., the above equationr0, m)(r0),implies that we need to choose ““[ ÏÏ at sincer1 u

r
> m)(r1)and similarly ““ ] ÏÏ at outer boundary. Furthermore, the

group velocity at inner and outerv
g
\ Lu/Lk

r
B <c

s
k
r
/ o k

r
o

radii, respectively. Since physically we expect the wave to

propagate away from the central region, this requires that
at and at which means at bothv

g
\ 0 r1 v

g
[ 0 r2, k

r
[ 0 r1and r2.In the computational results presented here we take the

inner boundary to be at and the outer boundaryr1\ 0.6r0at where is the radius of the bump or jump.r2\ 1.4r0, r0We Ðnd that there is essentially no dependence of our
results on the values of andr1 r2.

3.4. Initial Value Problem
A di†erent approach to solving the linearized equations

(5)È(7) is to treat them as an initial value problem. We let
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, (27)

where all variables have the same meaning as in ° 2.
Assuming that the / dependence of u has the form
exp (im/), we can rewrite equations (5)È(7) as a system of
Ðrst-order partial di†erential equation in one dimension,
i.e.,

Lu
Lt

] G(r) :
Lu
Lr

] H(r) :u \ 0 , (28)

where it is straightforward to write down the elements of
matrices G and H. It can be shown that these equations are
hyperbolic. Matrices G or H can be diagonalized individ-
ually but not simultaneously.

We have written a code to solve equation (28) using a
second-order MacCormack method. The idea is to deter-
mine the growth rates of di†erent initial perturbations. Of
course, solutions of equation (28) will eventually be domi-
nated by the most unstable mode. From this solution we can
get the growth rate, the real frequency, and the radial wave
function for all four variables. However, we recommend the
method described in ° 3.2 because it allows a comprehensive
search for unstable modes and the corresponding eigen-
functions. The initial value code for equation (28) can then
be used to verify the behavior of these modes.

4. RESULTS

We present the solutions to equation (15) for di†erent
types of initial equilibrium as discussed in ° 2. In Paper I, we
showed that a necessary condition for instability is that the
key function L(r) 4 (&)/i2)S2@! have an extreme as a func-
tion of r. This condition is a generalized Rayleigh inÑexion
point theorem for compressible and nonhomentropic Ñow.
All three initial equilibria presented earlier satisfy this
necessary condition for instability. Here we discuss in detail
the behavior of these unstable modes.

4.1. Step Jump HSJ Case with A\ 0.65
The initial equilibrium for this case is shown in Figure 2.

For m\ 3, we Ðnd that the most unstable mode for this
equilibrium has a growth rate and a real fre-c/)0B 0.154
quency u

r
/(m)0) B 0.92.

It is informative to plot the e†ective potential, C(r), of
equation (15). We can neglect B(r) because its magnitude is
much smaller than C(r). Thus, equation (15) can be simpli-
Ðed to give

(@@] C(r)( \ 0 . (29)
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Then the function C(r) is analogous to the quantity
E[ V (r) in quantum mechanics except that here C(r) is
complex (Paper I). The real and imaginary parts of C(r) are
shown in Figure 6 (upper panel). First, we consider the
region of which is most a†ected by the0.95\ r/r0\ 1.05,
presence of the surface density jump. There is a negative real
part of [C which is analogous to the potential well in
quantum mechanics where bound states are possible,
although again the fact that C is complex prevents a direct
analogy. The two sharp peaks in this region are not singu-
larities but result from the two extrema of 1/(i2[ *u2). In
the region the function [C is dominated byr/r0\ 0.8,

whereas for [C isc1B[(m)/c
s
)2P [r~3, r/r0[ 1.2,

dominated by Now consider anc1B [(u
r
/c

s
)2P [const.

unstable mode that is excited in the potential well around
The positive potential around and 1.1 causesr0. r/r0\ 0.9

this mode to be evanescent in this region. The potential is
negative for and so that there will be ar/r0\ 0.8 r/r0[ 1.2
Ðnite probability for this mode to tunnel through the poten-
tial barriers. In other words, a mode excited around byr0the surface density jump can ““ radiate away ÏÏ into both the
inner and outer parts of the disk. This is indeed the case as
seen in Figure 7, which shows the radial eigenfunctions of
various physical quantities derived from ((r) using equa-

FIG. 6.ÈE†ective potential well [C(r) in eq. (15) for the most unstable
mode with m\ 3, found using parameters of the HSJ, NSJ, and HGB
cases. The solid and dashed curves are the real and imaginary parts of the
function [C(r), respectively. The unstable modes are excited at radii near

inside the potential well. The unstable modes are trapped in this poten-r0tial well. This trapping, however, is not absolute since there is a Ðnite
““ probability ÏÏ for modes to tunnel through into both the inner and outer
parts of the disk.

FIG. 7.ÈRadial eigenfunction for the perturbed surface density, for the
radial and azimuthal velocity perturbations, and for the pressure pertur-
bation, for the most unstable mode of the homentropic step jump (HSJ) for
m\ 3. The solid, dashed, and long-dashed curves are the amplitude, the
real, and the imaginary parts of the eigenfunctions, respectively. All wave
functions show their largest amplitudes near the deepest position of the
potential well (slightly away from The amplitudes decrease going awayr0).from The wavelike oscillations toward the inner boundary are due tor0.the radiative boundary condition. Similar oscillations also occur toward
the outer boundary, but their amplitude is too small to be evident. These
features of the wave functions are consistent with the potential well shown
in the upper panel of Fig. 6.

tions (9)È(11). In obtaining these eigenfunctions, we have
used outward-propagating sound wave boundary (i.e.,
radiative) conditions discussed earlier. The relative phase
shift between real and imaginary parts indicates this propa-
gation. Note that the radial wavelength of the unstable
modes is at least 2*r º h ; that is, the two-dimensional
approximation is satisÐed. Furthermore, we have main-
tained the actual relative amplitude among all four vari-
ables.

4.2. Step Jump NSJ Case with A\ 0.52
For m\ 3, the most unstable mode for this non-

homentropic equilibrium has a growth rate c/)0B 0.176
and a real frequency These values areu

r
/(m)0) B 0.93.

slightly di†erent from the homentropic case presented
above with a slightly higher growth rate. Note that the two
cases have roughly the same jump in total pressure, but the
homentropic case requires a higher surface density jump.
This will always be the case if !\ 2. Consequently, the NSJ
case has a slightly deeper trap which is shown in both the i2
and the e†ective potential [C as depicted in Figure 6
(middle panel). The eigenfunctions for all four variables are
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FIG. 8.ÈSimilar to Fig. 7 except that parameters for the homentropic
Gaussian bump (HGB) are used. Again, the structure of the eigenfunctions
is consistent with the potential well shown in the bottom panel of Fig. 6.
For example, the two peaks in the pressure eigenfunction corresponds to
the two minima of the potential.

almost the same as in the HSJ case (cf. Fig. 7), therefore we
do not show them here.

The comparison between the NSJ and HSJ cases con-
Ðrms one of the conclusions in Paper I that the variation of
the temperature is more e†ective than that of the surface
density in driving this instability.

4.3. Gaussian Bump HGB Case with A\ 1.25
For m\ 3, the most unstable mode for this case occurs

with a growth rate and a real frequencyc/)0B 0.21
The e†ective potential [C for this case isu

r
/(m)0) B 0.98.

shown in Figure 6 (bottom panel). The corresponding eigen-
functions are shown in Figure 8.

It is interesting to note that for the rather small Gaussian
bump used here (A\ 1.25), the instability has a higher
growth rate than the step jump cases considered above.
This di†erence can be understood as due to the deeper trap
produced by the Gaussian bump. This can be seen by com-
paring the proÐles for both cases using Figure 2 andi2/)K23. Since is positive at both the rising and declin-d()/)K)/dr
ing edges of a Gaussian bump and is positive only at the
rising edge of a step jump, the i2 proÐle has two regions
that are higher than in HGB compared to just one such)K2region in HSJ. In general, larger i2 indicates stronger stabil-
ity, and they directly translate into the forbidden regions in
the potential structures shown in Figure 6 (bottom panel).
Thus, a mode excited around is well trapped by ther0““ walls ÏÏ at and 1.1È1.2. The HSJ case also hasr/r0B 0.8È0.9
a positive spike at but it does not provide goodr/r0D 1.05,
trapping because the spike is too narrow. Again, we have
used the outward-propagating sound wave boundary con-
ditions discussed earlier so that there is a Ðnite probability
for an unstable mode to tunnel through the potential bar-
riers.

FIG. 9.ÈDependences of the mode frequencies and growth rates on the amplitude of the surface density jump/bump A, with m\ 5 for the three cases
considered. The vanishing of the growth rate for indicates the thresholds for individual cases. The vertical dashed lines show the critical values ofA\Athres
A where i2] N2\ 0. For larger values of A the Ñow violates the condition for local axisymmetric stability (see ° 3.1).
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FIG. 10.ÈDependences of the mode frequency and growth rate c onu
rthe azimuthal mode number m. The Ðlled dots, squares, and triangles are

for the HSJ (A\ 0.65), NSJ (A\ 0.52), and HGB (A\ 1.25) cases,
respectively.

FIG. 11.ÈDependences of the mode frequency and growth rate c onu
rthe sound speed for the homentropic step jump (HSJ) for m\ 5.

4.4. Instability T hreshold and Maximum Growth Rates
Consider now the dependence of the growth rate and

mode frequency on the bump/jump amplitude A and the
azimuthal mode number m. As the amplitude A decreases,
the growth rate of the instability is expected to decrease. At
small enough A[ 1, the instability should turn o† (Paper
I). It is clearly of interest to determine the minimum A for
instability.

Figure 9 shows the growth rate and mode frequency as a
function of A for the three cases considered, all for m\ 5.
The threshold values are 0.16, and 1.08, forAthresB 0.19,
the HSJ, NSJ, and HGB cases, respectively. Note that the
values of depend on *r because the radial gradient ofAthresthe surface density &(r) is important in giving instability.
Roughly speaking, a factor of D1.2 jump or an 8% bump in
the surface density is sufficient to cause the Rossby wave
instability.

The vertical dashed lines in Figure 9 indicate the A-
values beyond which part of the Ñow has i2\ 0, as dis-
cussed in ° 3.1. In the step jump cases, the Rossby wave
instability continues smoothly through the point where i2
changes sign. In the HGB case, the instability also exists for
values of A where i2\ 0 in part of the Ñow. There is a
continuous increase in growth rate as A increases (not
shown here), although there seems to be a kink at the point
where i2 starts to have a range of negative values. We do
not pursue here the situation when both the Rossby and the
axisymmetric instabilities are present simultaneously. We
emphasize that the Rossby instability discussed here has a
substantial growth rate when the Ñow is[¹0.2)K(r0)]stable to axisymmetric perturbations.

Figure 10 shows the dependences of the growth rate and
mode frequency on the azimuthal mode number m for the
three cases. The peak of the growth rates around m\ 4, 5
probably results from a preferred azimuthal wavelength in
comparison with the radial wavelength of the unstable
modes.

4.5. Dependence on Sound Speed
Because the Rossby instability depends critically on the

pressure forces, its growth rate has a strong dependence on
the magnitude of sound speed. This is shown in Figure 11
for the HSJ case for m\ 5. As the sound speed decreases,
the pressure forces are no longer strong enough to perturb
the rotational Ñow, the instability disappears. This is similar
to the threshold seen in Figure 9 when the pressure jump/
bump is too small. Judging from the plot, the growth rate
increases roughly linearly with c

s
.

Note that the threshold value of also depends on *r. Asc
sdecreases, so does the thickness of the disk. Thus, thec

sallowed *r can be smaller so long as the wavelength of the
unstable modes is larger than the disk thickness. This is a
necessary condition for two-dimensional approximation to
be satisÐed.

5. DISCUSSION

5.1. Origin of Initial Equilibrium
The condition for the Rossby wave instability (RWI) dis-

cussed here can be understood in terms of the RayleighÏs
inÑexion-point theorem (Drazin & Reid 1981, p. 81), which
gives a necessary condition for instability. If the accretion
disk is close to Keplerian everywhere with temperature and
density being smooth power laws, the RWI does not occur.
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The local extreme value of the key function L(r) considered
here is caused by the local step jump or Gaussian bump in
surface density (or possibly in temperature if the Ñow is
nonhomentropic). However, the considered proÐles of &(r)
and P(r) are not the only ones which may lead to instability.
For example, a proÐle with a local extreme in potential
vorticity distribution may also give instability. An impor-
tant aspect of the RWI is that the required threshold for
instability is quite small. Typically, a 10%È20% variation of
&(r) over a length scale slightly larger than the thickness of
the disk gives instability.

The question is, then, can such an initial equilibrium exist
in real astrophysical systems? The answer to this question
requires detailed knowledge about how matter is initially
brought in toward the gravitating object. One plausible
situation is that accreting matter is gradually stored at some
large radial distance. Subsequently, after say a sufficient
buildup of matter then efficient accretion can proceed. This
is perhaps the physical situation in the case of low-mass
X-ray binaries, where the systems go through episodes of
outbursts with long, quiescent intervals between them (see
Tanaka & Shibazaki 1996 for a review). In protostellar
disks, it is possible that di†erent regions of the disk have
di†erent coupling strength between matter and the mag-
netic Ðeld. This could lead to accumulation of matter at
large distances where the disk is nonmagnetized. At smaller
distances, the accretion may be due to the Maxwell stress
from due to turbulent magnetic Ðelds arising from the
Balbus-Hawley instability (Brandenburg 1998). Matter
accumulation over some Ðnite extent in radius could most
likely lead to enhanced gradients of surface density and/or
temperature, thus satisfying the conditions for the RWI
discussed here.

Another aspect of the problem is the role of vertical con-
vection. We have mostly discussed our instability in the
two-dimensional limit where the vertical variation of physi-
cal quantities is all averaged away. In real disks, however,
there are certain processes in the vertical direction that
could occur on a fast timescale, such as vertical convection
(Papaloizou & Lin 1995 ; Klahr, Henning, & Kley 1999).
The vertical convection is perhaps not a main concern here
since it helps to bring the matter in a vertical column to the
same entropy, which is assumed in our present study. For
the horizontal motion, as we emphasized before, the initial
equilibria we have studied are all stable to the local convec-
tive instabilities. So, the RWI will always be the dominant
instability unless there are other instabilities [in the (r, /)
plane] that have lower thresholds and faster growth rates.

5.2. Minimum Surface Density and Relevance to
X-Ray Novae

We mentioned earlier the important role of the pressure
for the RWI. This leads to an important physical(Pc

s
2)

requirement on the minimum surface mass density of the&
cdisk for the RWI to be important. Heat must be conÐned in

the region of RWI for a time much longer than rotation
period in order for the mode to grow without radiative
cooling. This conÐnement requires a minimum surface
density which depends on the opacity and speciÐc heat of
matter. This translates to roughly g cm~2. In&

c
D 102È103

other words, if & is too small, the RWI will not occur and
there will be no Rossby vortex induced accretion. But once
enough matter has accumulated so that & exceeds this
threshold RWI sets in and there is efficient accretion due&

c
,

to Rossby vortices. This may correspond to the distinctly
di†erent states of accretion in X-ray binary systems where
sources are often observed to be ““ active ÏÏ or ““ quiescent. ÏÏ

As shown by Tanaka & Shibazaki (1996), X-ray novae
(especially black hole candidates) show long quiescent inter-
vals in X-rays despite that the companion star is still contin-
uously feeding mass to the compact object at D1015È1016
gm s~1. This strongly implies a mass accumulation at some
large distances without much accretion going on. The accu-
mulated mass over an interval of D50 yr will be
D1.5] 1024È1025 g, which gives a surface density of
&D 5 ] 102È103 g cm~2 with a size of D3 ] 1010 cm. This
critical & is interestingly close to the value we discussed
above. So, we believe it is worthwhile to pursue RWI as an
alternative mechanism for causing an outburst in X-ray
novae, in addition to the usual disk instability models.

5.3. Comparison with the Related Work
It is difficult to make a direct comparison of the RWI

with the original Papaloizou & Pringle instability. In PP
instability, a torus and/or an annulus has two edges, and the
existence of certain unstable modes critically depends on
these edges (i.e., the so-called principal branch). In our
study, the surface density bump case can perhaps be viewed
as a torus except that it is embedded in a background
Keplerian shear Ñow. Here we discuss two major di†erences
between the two instabilities. One is the treatment of
boundary conditions. In our study, the propagating sound
wave boundary condition provides a natural and important
link of the unstable region with the surrounding Ñow. This
allows us to directly apply such instability to a thin
Keplerian accretion disk of a much larger radial extent. In
the nonlinear regime, this ““ leakage ÏÏ will allow the unstable
modes to grow further nonlinearly and impact a large part
of the disk Ñow also. The second di†erence is the fact that,
unlike PP instability, the rotational proÐle )(r) is not taken
as a single power law in our case. Instead, enhanced epi-
cyclic frequency occurs in association with the surface
density jump/bump boundaries. This naturally creates the
potential well that allows the unstable modes to grow and
provides the trapping at the boundaries, as illustrated by
the structure of the potential in Figure 6. The corotation
radius occurs within this potential well.

5.4. Nonhomentropic versus Homentropic
In Paper I we have already given a necessary condition

for instability with respect to two-dimensional non-
axisymmetric disturbances, that is, for a key function

L(r) 4F(r)S2@!(r) (30)

to have a local extreme, where is theF~1\ zü Æ ($ Â ¿)/&
potential vorticity, S \ P/&! is the entropy. This is a gener-
alized Rayleigh criterion which was originally derived for
incompressible Ñows (cf. Drazin & Reid 1981). Most studies
of PP instability have assumed homentropic Ñow where
entropy of the whole Ñuid system is a constant. The inclu-
sion of S(r) in equation (30) makes it perhaps more applic-
able to real astrophysical disks where entropy is usually not
a constant. As we have shown in this paper, the onset of the
RWI, however, does not depend on having an entropy gra-
dient. On the other hand, as shown in Paper I and by the
comparison of the HSJ and NSJ cases, temperature varia-
tion is more e†ective in causing the instability. Further-
more, an entropy gradient introduces more features into the
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problem, most notably that the potential vorticity of the
Ñow is no longer conserved due to the net thermodynamic
driving of vorticity from the fact that (see$T Â $S D 0
Paper I).

5.5. Work Integral
An energy-like equation known as the ““ work integral ÏÏ

can be derived from the Ðrst-order equations (8)È(11) (Ando
1981 ; Kojima 1989 ; Kojima et al. 1989). This integral pro-
vides a useful check on the calculations. For homentropic
condtions the equation is

A L
Lt

] )
L
L/
BG&

2
C
(d¿)2]

AdP
&c

s

B2DH

\ [$ Æ (dPd¿)[ &r
d)
dr

dv
r
dvÕ . (31)

Integration of this equation over the disk gives

LE
Lt

\ [2n
P

r2dr
d)
dr

&Sdv
r
dvÕT , (32)

where E is the integration over the disk of the quantity
within M N in equation (31), where S T denotes an azimuthal
average, and is the Reynolds stress.&Sdv

r
dvÕTFigure 12 shows a plot of the Reynolds stress &Sdv

r
dvÕTfor the HGB case with m\ 5 (results for the HSJ and NSJ

cases are similar). Positive values of the Reynolds stress (as
a function of r) correspond to instability in view of equation
(32) and the fact that d)/dr \ 0. Positive values of the Rey-
nolds stress also correspond to the outward transport of
angular momentum.

FIG. 12.ÈReynolds stress (arbitrary units) at radius r as derived from
the velocity variations in linear theory. The positive values of this quantity
indicates outward transport of angular momentum.

A full evaluation of the angular momentum and matter
transport due to the RWI evidently requires nonlinear
hydrodynamic simulations. We have begun to perform
these simulations and will present our Ðndings in a forth-
coming paper (Li, Lovelace, & Colgate 2000, in
preparation). BrieÑy, we have observed the production of
large-scale two-dimensional vortices in the (r, /) plane, and
these vortices are observed to survive the shear Ñow for
many revolutions of the disk There is also indication(Z10).
of outward angular momentum transport, which shows
promises for this instability being a robust mechanism of
angular momentum transport.

One important point we want to emphasize is that the
transport process regulated by these large-scale vortices is
inviscid, highly dynamic, and nonlocal. This is fundamen-
tally di†erent from the standard a-disk models where the
Ñow is assumed to be viscous, hence the transport is at a
small scale (i.e., local) and a quasi-stationary state can
usually be reached. In fact, the notion of a statistically sta-
tionary a-value and stationary accretion may be an incor-
rect physical picture for the accretion in some highly
variable systems such as X-ray binaries.

6. CONCLUSIONS

We have developed a detailed linear theory of the Rossby
wave instability associated with an axisymmetric, local
surface density jump or bump in a thin accretion disk. The
instability is termed Rossby due to its WKB dispersion
relation which is analogous to that for Rossby waves in
planetary atmospheres. Rossby vortices associated with the
waves are well-known in planetary atmospheres and give
rise for example to the Great Red Spot on Jupiter
(Sommeria et al. 1988 ; Marcus 1989, 1990). The Ñow is
made unstable due to the existence of local extreme value of
a generalized potential vorticity L(r) which includes the
radial variation of entropy. Depending on the parameters,
the unstable modes are found to have substantial growth
rates where is the location of enhancedD0.2)(r0), r0surface density gradient. These modes are capable of trans-
porting angular momentum outward. Since this instability
relies on pressure forces perturbing the rotational Ñow, it
requires a minimum sound speed or a local heat content.
We expect that the disk must be optically thick in order for
the instability to be important.

It is important to understand the nonlinear interactions
between this instability and the rest of the disk and to see
whether the instability is e†ective in transporting angular
momentum globally. An important aspect of the present
instability is that the unstable modes propagate into the
surrounding stable disk Ñow, thus allowing the instability to
impact a large part of the disk. We have performed prelimi-
nary nonlinear hydro simulations of this instability and will
report the detailed results in a forthcoming publication. The
simulations have conÐrmed the the linear growth of the
Rossby wave instability and they have shown the vortices
have long lifetimes (many orbital periods).
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